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Does fabric tensor exist for a fabric? 
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It is shown that the mean intercept length distribution for planar fibre networks or for materials 
composed of a set of plates is not in general elliptic and cannot be expressed analytically in 
terms of a second-order tensor. However, our numerical computations indicate that the polar 
plot of the mean intercept length at the angle of measurement may become nearly ellipsoidal 
as the microstructure (fibres or plates) become less discretely organized, but yet remain ortho- 
tropic. The equations presented in this study may be used to obtain fibre (plate) orientation 
density functions from the experimental data on mean intercept length distribution. 

1. I n t r o d u c t i o n  
The purpose of the present study is to formulate 
mathematically the correspondence between mean 
intercept length distribution and fibre orientation 
density in a plane fibre network. The mathematical 
analysis developed here is equally valid for a three- 
dimensional material that is composed of sets of 
parallel plates. Mean intercept length (L) is defined as 
the average distance between the interfaces of a micro- 
structure measured along a straight line. Experimental 
data on cancellous bone samples showed that the 
polar plot of L at the angle of measurement generates 
an ellipse in any plane cross-section intersecting a 
bone sample [1, 2]. Harrigan and Mann [2] showed 
that, under these conditions, L could be expressed in 
terms of a second-order tensor called the mean inter- 
cept length tensor. More recently, Cowin [3, 4] has 
postulated a constitutive relation between stress in a 
biological tissue that has microstructure (bone, skin) 
and fabric tensor that also depends only on the mean 
intercept length distribution. Because the existence of 
the aforementioned microstructural tensors depend on 
whether the resulting mean intercept length distribu- 
tion can be adequately described by an ellipsoid, 
we have considered this condition analytically for 
composites made of plates or fibres. In Section 2, 
we present mathematical expressions relating mean 
intercept length density to the fibre (plate) orientation 
density. We show that fabric tensor does not exist for 
fibre networks with a discrete number of distinct fibre 
directions. The results and their implications on the 
study of remodelling of soft biological tissues are 
discussed in the last section. 

2. Derivations 
In this section we derive a closed form expression for 
the mean intercept length distribution of a material 
composed of sets of parallel plates and show that this 
distribution cannot be described mathematically in 
terms of a second-order symmetric tensor. 
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Let us consider a composite material made up of 
sets of parallel plates embedded in an isotropic matrix 
(Fig. 1). The plates in different sets are assumed 
to coexist at the region of intersection. Any planar 
cross-section of the composite will then look like a 
fabric composed of sets o f  two-dimensional parallel 
fibres with thickness equal to the oblique thickness of 
the corresponding plates. Let ai, i = 1, 2, 3, be a unit 
vector along which the mean intercept length L is 
measured (L = L(ai)). A set of parallel plates in the 
composite (e) is identified by the common unit normal 
n (~, ~ = 1, 2 . . . .  , N. The parameter N denotes the 
number of plates with distinct orientations that exist 
in the composite. The directional sense of the unit 
vector nl ~) is chosen such that the dot prodi~ct of nl ~ 
with ai is greater than or equal to zero (n~ ~)ai ~> 0). 
Summation is implied when an index is repeated twice 
in a term of a mathematical expression. 

The mean intercept length for the composite can be 
obtained by summing the reciprocals of the mean 
intercept length IlL ~) computed for each set of plates 
independently, i . e .  

= (1) 

where u X;~=l denotes summation over the sets of plates 
with distinct orientations. From geometric relations 
and noting that the number of intersections increase 
by two each time the line on which L is measured 
crosses a plate, it can be shown that L satisfies the 
following expression (Fig. 1) 

1 
2 ain~) (2) 

2 = 

where (1/b (~)) is the number of plates per unit length in 
direction n (~3, i.e. b (~ is the spacing of the plate set e. 
Equations 1 and 2 hold for infinitely thin plates so 
there is essentially zero common volume. For thick 
plates, there will be mutual interference and the 
equations will be more complicated. Harrigan and 
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Figure 1 Three-dimensional plate network made up of sets of par- 
allel plates. Only one plate is shown. The neighbouring plate passes 
through the origin. 

Mann [2] previously showed that if L, plotted as 
a radius at the angle of  measurement, generates a 
surface of an ellipsoid, then 1/L 2 can be represented as 

1 
L2 - M ~ a , a j  (3) 

where M o is defined as material anisotropy (mean 
intercept length) tensor. It is a second-order symmetric 
tensor whose components are determined from the 
equation of the ellipsoid generated by the mean inter- 
cept length distribution. 

Using Equation 2, it can be shown that (1/L 2) for 
the simple composite considered in the present treat- 
ment also satisfies the quadratic Equation 3, but the 
resulting symmetric matrix M,j is not a tensor. Matrix 
M~j in this case can be shown to be equal to 

= n) n i ) ~='~=' ~ ~ (nl~)n~) + (~) (l~) 

(4) 

A necessary condition for M~ to be a second-order 
tensor is that M o. should be independent of the 
direction a~ along which L is measured. But, in 
the derivation of  Equation 2, we have assumed that 
the sense of nl ~) is chosen such that the scalar product 
of n} ~) with ai would be greater or equal to zero. 
Hence, M U is not independent of ai. This point can be 
illustrated by considering a composite material with 
two sets of  plates normal to Xl and x2 directions, 
respectively. 

Using Equation 4, it can be shown that 

where F 
0) and 
a2 < 0). 
a tensor 
plane at 

M lj  = 4 

l 2 

M 3 3  = M I 3  = M 2 3  = 0 

I ~ ~- M21 ( 5 )  

= +1  if(ai  > 0, a2 > 0) o r ( a  I < 0, a2 < 
F = --1 if (aj < 0, a2 > 0) or (aj > 0, 
Because M~ is not independent of  ai, it is not 
in this case. The polar plot of L in the x, y 
the angle of  measurement 0 (so a I = COS 0 ,  

a2 = sin 0) is not an ellipse, but is composed of four 
straight fine segments (Fig. 2). 

The fact that the plot of L against 0 is a straight line 
in each quadrant, but 1 / L  2 has the form of Equation 3, 
can be reconciled by considering L as a function of 0 
for any straight line in the x, y plane not passing 
through the origin. Here L is the distance from the 
origin to the line. It can be readily shown that for the 
line 

that 

y = b - m x  (b > 0, m > 0) (6) 

'rm ll = b2l_m (7) 

Thus, Equation 3 may describe a straight line L(O),  

but when it does, IMI = 0. The alternation of  F in 
Equation 5 gives the four different straight lines in 
Fig. 2c. 

If more sets of plates perpendicular to the x~, x2 
plane are added, as in Fig. 2b, then similar expressions 
can be derived, with a change of sign o f a  F factor each 
time the normal n {~) of  set (~) becomes perpendicular 
to the 0 direction. In between such changes, I / L  2 has 
the form of  Equation 3, but IM~I = 0 so the plot of  
L(O) is a sequence of  straight lines. 

In the general three-dimensional case, for a discrete 
number, N, of sets of planes, there will be solid angles 
(bounded by planes) within which Mii in Equation 3 
are constant. But it can be shown that IMps] = 0 and 
that it follows that L ( a i )  within these regions lies on a 
plane, not intersecting the origin. Thus, the three- 
dimensional surface L ( a i )  is a polyhedral closed 
surface for a discrete number, N, of  sets of planes. It 
is not an ellipsoid and IM,jl = 0 on each face. (See 
Appendix for proofs.) 

The analysis described above is equally valid for a 
plane fibre network provided that the spacial indices 
in Equations 2 and 4 are restricted to the values i = 1 
and 2. Therefore, the mean intercept length distribu- 
tion matrix, 34,)., is not a second-order tensor for a 
fabric (plane fibre network) with a discrete number, N, 
of sets of fibres. 

Recently, Cowin defined a tensor H called fabric 
tensor as: 

H = M - I / 2  (8)  

where M U is the symmetric tensor defined by Equation 
3. Because M 0 may not be a positive definite tensor for 
a fabric as illustrated with the example given above, 
the applicability of a fabric tensor for a plane fibre 
network (fabric) is not established. Our numerical 

TAB L E I Mean intercept length distribution (L) corresponding 
to the fibre orientation density Q = ]cos q5[/2 

Direction, 0 Mean intercept length L evaluated by tensorial 
(deg) L (Eq. 8) expression (Eqs 3, 12) 

0 I 1 
30 0.886 0.855 
45 0.795 0.763 
60 0.711 0.689 
90 0.637 0.637 
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NETWORK DIMENSIONS MEAN INTERCEPT LENGTH 

1 b = a = i in (0) i I in (C} 
2 b = 2, (7 = 1 in (0) L 2 in (C) 

3 b = ~ = 1 in (b) /3 in (d) 

4 b = 2, a = i in (b} L 4 in (d} 

Figure 2 Four distinct fibre networks and the corresponding mean intercept length distributions. The parameters of the four networks are 
shown in the table inset. The topology of  networks 1 and 2 are shown in (a) and that of  networks 3 and 4 in (b). The dimensions a and b 
define the distances between axes of  adjacent parallel fibres. The mean intercept lengths L 3 and L4 for networks 3 and 4 are shown in (d). 
In each case, the mean intercept length L(O) is indicated by the radial distance to the curve shown at each 0. Each curve is plotted in the 
same x, y plane in (c) and (d) as in (a) and (b) to indicate the orientation 0 with respect to the same x, y axes. 

computations indicate that the deviation of  the mean 
intercept length distribution from that of an ellipsoid 
tends to decrease as the number of distinct fibre (plate) 
directions increases. For  this reason we have next 
considered a plane fibre network with a continuous 
distribution of fibre orientations. The mean intercept 
length L satisfies the following integral equation in 
this case: 

1 
- 2 Io Q(4,) sin (10 - 4,1) d4, (9) 

/4O) 

where 0 is the angle at which L is measured (so 
al = cos0,  a2 = sin0) and Q(4,) is the number 
density per unit length of fibres with orientation e 
(i.e.) el = cos 4,, e2 = sin 4,). 

Let us consider the simple case of Q(4,) = Q0t cos 4'1 
for which a closed form integration of  Equation 9 is 
possible. The parameter ( l /L) can then be shown to 
satisfy the following equation 

1 2Qo(cosO+OsinO)(O < 0 < 2 ) ( 1 0 )  
L 

The components of Me corresponding to Equation 10 
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can be written as 

M1L = 4Q02 M22 = 4Q~O 2 

Ml2 = 8Q~O ~ r~ - ~ ~< 0 ~< ~ (11) 

Hence, M o clearly depends on 0; therefore, it is not a 
tensor. However, the polar plot of L = L(O) is nearly 
elliptic for Q = Q0lcos 4,1 (Fig. 3). The major and 
minor radii of  the elliptical approximation to the L 
distribution are 1/2Q0 along xl axis and (1/~Q0) along 
Xz axis. Mo corresponding to this ellipse can be shown 
to be equal to 

M ,  -- 4Q~ M22 = ~z2Q~ M12 = 0 
(12) 

This example provides an analytical illustration 
consistent with the observation that mean intercept 
length distribution becomes nearly elliptic as the fibre 
network becomes less discretely organized, preserves 
orthotropic symmetry but is not, in fact, representable 
by a constant tensor M~j in Equation 3. In such cases 
mean intercept length tensor can be constructed as 
shown by Harrigan and Mann [2] by curve fitting 
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Figure 3 Mean intercept length distribution L(a) corresponding to the fibre orientation density Q = (1/2)lcos 0l (b). The continuous lines 
in (a) represent the actual mean intercept length distribution. The curve shown with discrete lines represents the ellipsoidal approximation. 

the polar plot of  L with the equation of an ellipsoid so 
that M~ becomes a constant tensor and represents the 
data reasonably well. Not  all continuous fibre distri- 
butions yield polar plots of  L that are very nearly 
elliptic. Consider, for example, the case of  Q = 
QoJsin 201. It can be shown that the mean intercept 
length L in this case can be expressed in terms of  0 as 

1 
= 8 Q0(sin 0 + cos 0 - sin 0 cos 0) 

7"C 
0 < 0 ~ g (13) 

The polar plot of  L as a function of 0, as shown in 
Fig. 4, is not an ellipse. 

There probably are distributions Q(ai) of planes in 
three dimensions or Q(~b) in two dimensions which 
give distributions of  L(a~) or L(O) which are ellipsoidal 
or plane ellipses, but such distributions are not 
known in closed form at present. 

3. E l a s t i c  c o e f f i c i e n t  t e n s o r  o f  a f a b r i c  
a n d  t h e  f a b r i c  t e n s o r  

In the previous section it has been shown that the 
mean intercept length distribution can be represented 

with reasonable accuracy for some fabrics with 
continuous fibre orientation density by an approxi- 
mate elliptical mean intercept length and that H 0 
exists, approximately. In this section we investigate 
the relation between fabric tensor//~i and the elastic 
coefficient tensor of  a fabric. 

The stress-strain relation of  a plane fibre network 
with elastic fibres is linear in the presence of small 
deformations 

~ro = C*ktekt (14) 

where o- 0. and ekt are the stress and strain tensors and 
C~*kl is the elasticity coefficient tensor. The elasticity 
coefficient tensor will have contributions from the 
fibres as well as the matrix in which the fibres are 
embedded. For  simplicity we shall consider below 
only the part  of  C*kt that is contributed by the fibres in 
the matrix (C~ki). I t  can be shown that [5] 

~=/2 P(O)b, bjb~b, dO (15) C,)kl = 2D J-~/2 

where the unit vector b denotes the fibre direction, 
P = P(0), is the fibre density distribution, and D is a 
material constant which is a measure of  fibre stiffness. 
In the case of  a fibre network with uniform fibre 
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Figure 4 Mean intercept length distribution L(a) corresponding to the fibre orientation density Q = sin 1201 (b). The continuous lines in 
(a) represent the actual mean intercept length distribution. The curve shown with discrete lines represents the ellipsoidal approximation. 
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diameter d, P is related to the fibre number density Q 
by the equation P -- Q(rcd2/4). The components of 
Co, t can easily be evaluated once the fibre density 
distribution is known. For example, for the fabric with 
Q = Q01cos 01 considered in the previous section, it 
can be shown by substituting P(O) in Equation 15 that 

red 2 
C,~,, = (16/15) ~--  QoD 

~d 2 
C2222 = (6/15) - -~  QoD 

Cll22 = C2211 = Ci212 = C2112 -~- CI221 

zd 2 
= Cm' - 15 QoD (16) 

and all other components are equal to zero. 
Recently, Cowin [6] proposed the following con- 

stitutive relation for a porous elastic solid in which the 
anisotropic behaviour is due only to the geometry of 
the microstructure represented by the fabric tensor H 

C~k,, = alf~6k,, + a2(H~6~m + (~ijHkm) 

-~- a3((~ijHkqHqm q- (~kmHiqHqj) -11"- biI-to.Hkm 

+ b2(H, jH,,,,H,,,.,, + H,~H, fl,,,,,) 

+ b~H,,H~iHk,,H,,., + c,(GG,j + a.,,akj) 

+ cdrt,,,,,5,. + H~j,5,,,, + H,,,,,Lj + HmjG) 

+ c~(H,m,.k,~j + H~rH,.jam, 

+ HirHrmakj + HmrHrja,k) (17)  

where a~, a2, a3, hi, b2, b3, Cl, C2 and c3 are functions 
of  the porosity of  the material as well as the invariants 
TrH, TrH 2 and TrH 3. Tr represents "trace", e.g. 
TrH = Hn + 1122 + H33. However, this form is not 
convenient to model plane fibre networks. To reduce 
the plane fibre network case, the range of  i,j, k, m and 
r in Equation 17 is reduced to 1, 2 instead of  1, 2, 3. 
There is another inconvenience to use of  Equation 17 
which is that the non-zero components of  H becomes 
infinitely large as the fibre number density decreases. 
For  example, using the approximation in Equation 1 2, 

1 1 
H~I = 2Q0 H22 - rcQo H o. = 0 otherwise 

(18) 
for the fabric with P = Qo(~d2/4)]cos 0]. An alter- 
native suggested by Cowin [6] is to normalize the 
fabric tensor H U such that TrH = 1. This removes the 
dependency of H U on Q0. If  H was normalized in this 
way for the example above, Cowin's elastic coefficient 
tensor for the normalized H becomes 

Cuu = kl + k2I-I + k3Hil + k4H21 

where H - HUH22 

C2222 = kl + k2H + k3H22 + k4H22 

kl k3 k2 k4 
c,,~ = y + -6- + -(  n + ~ (/4, ~, 

C,2,2 = C2~2, = Ci,22 = G 2 1 ,  = 

+ / G )  

CI22~ = C21~2 

(19) 

For  P = Qo(rcd2/4)tcos OI the normalized fabric 
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tensor components of the two-dimensional space are 

rc 2 
H u - HIz = 0 H22 = (~ + 2) (~ + 2) 

(20) 
The coefficients k2, k3 and k4 can then be computed by 
assuming that the components Cok,, appearing in 
Equation 19 with k~ = 0 be equal to the correspond- 
ing elastic coefficients of  the fabric (Equation 16). This 
equality reduces to the solution of three simultaneous 
linear equations with a nonsingular matrix, and the 
coefficients k2, k3 and k4 can be shown to be pro- 
portional to (nd2/4)QoD. Hence these coefficients 
increase with increasing fibre density and increas- 
ing fibre stiffness as expected. The above analysis 
shows that the phenomenological stress-strain law 
proposed by Cowin is consistent with the correspond- 
ing equations of a fabric provided that the mean 
intercept length distribution can be represented by 
an ellipsoid. Although many fibre distributions can 
be well approximated by a mean intercept length in 
the form of an ellipsoids no exact (closed form) fibre 
distribution which gives this ellipsoidal result is 
known at this time�9 

4. Conclusions 
The mechanical behaviour of short fibre composites 
can be described analytically in terms of  even-order 
tensors that are expressed as functions of  fibre orienta- 
tion distribution [7]. For  example, the stress in a fibre 
network can be expressed in terms of the fourth-order 
elasticity coefficient tensor as discussed in the previous 
section [5]. In some composites such as skeletal muscle 
or reinforced concrete the evaluation of the fibre 
orientation density is not difficult. But in materials 
with less discrete microstructure such as skin, experi- 
mental methods that would yield quantitative infor- 
mation on fibre (collagen) alignment have not yet been 
established. Mean intercept length distribution may 
be easier to obtain experimentally for skin using 
micrographs of skin taken parallel and normal to 
the skin surface. Equation 2 then provides an approxi- 
mate method of evaluation of the number of fibres per 
unit normal length (1/b (~)) as a function of  fibre 
orientation from the experimental data on mean 
intercept distribution. This can be accomplished by 
measuring L at N different angles and assume that 
only N distinct fibre orientations exist in the com- 
posite. Equation 2 then becomes a set of  linear 
algebraic equations from which (1/b~)), ~ = 1, 2, 
�9 . . N can be computed by matrix methods. 

The observation that connective tissue undergoes 
growth and remodelling following long durations of 
stretch can be described quantitatively by the use of 
the mean intercept length tensor MAB. Let MAB be the 
mean intercept length tensor defined by Equation 3 in 
the reference state described by Cartesian coordinates 
-YR. It can then be shown that in the absence of growth 
and remodelling the mean intercept length tensor in 
the deformed configuration (mu) is given by the 
following equation 

mo = MAn •XA OX~ (21) 
,axi ~xj 



where x~ denotes the Cartesian coordinates of a 
material point in the deformed configuration. If 
the material remodels to preserve its original micro- 
structural organization following expansion, m~ 
determined by experimental data on the deformed 
configuration will not be equal to m~ given in Equation 
13 but will be identical to My measured in the reference 
state. Hence the use of tensors based on fibre density 
or mean intercept length density distribution may be 
useful in the quantitative analysis of connective tissues 
undergoing growth and remodelling. 

Appendix 
Prove that a finite number N of sets of planes results 
in a surface L(ag) which is a continuous polyhedral 
surface, each side of which is plane, where L is the 
mean intercept in the direction of unit vector a~. 

Consider first a set of planes equally spaced at b 
apart with a common normal direction n. The normal 
n may be chosen in either direction perpendicular to 
the planes, but after choosing it, it is held fixed. Let a 
be a unit vector in the direction that the mean inter- 
cept L is to be found. Choose the origin on one plane; 
then L'  defined as the distance to the next plane 
(the one shown in Fig. 1) is, for the range in which 
a ' n >  0,  

So 

L'  a .  n = b (A1) 

1 2 
L - b (alnl + a2n2 + a3n3) (A2) 

where we have used the fact that the crossing of each 
plane counts as traversing two interfaces so the 
mean intercept length L = L'/2.  It follows that 

where 

1 
L2 - Mua,a j (A3) 

4 
M~ = ~ ninj (A4) 

If the terms of  M~ are written out in full, it is readily 
seen that the determinant of M U is zero, i.e. 

IMal = 0 (A5) 

Equation A5 follows from the fact that each row of 
M o. is equal to the vector [nj, n2, n3] times a constant 
which varies with the row. It is also easily seen that 
every cofactor of the matrix is zero. 

Next, consider two sets of  planes and a region (i.e. 
a solid angle region) in which a"  n ~ and a"  n (2) are 
positive or zero. Here n {~) and n (2) are chosen normals 
to the sets of  planes e = 1 and c~ = 2, respectively. In 
this discussion the directions of these normals are 
considered fixed once they are chosen. Because the 
reciprocal of mean intercept length is a measure of the 
number of  intercepts per unit length, these reciprocals 
add for the two sets so 

_ 2 
1 2 ainl 1} + ainl 2) (A6) 

Equation A6 may be written in the form 

where 

1 

L 
Ala~ + A2a2 q.- A3a 3 

2 n~l) 2 AI = ~ 5  + ~ n12) 

2 n(2i } 2 n(22 } A2 -- 

2 n~l) 2 n~2) 

(AV) 

(A8) 

Comparing Equation A7 with A2, it can be seen that 
Equation A7 is equivalent to the mean intercept length 
of a single set of  planes with spacing b and normal n. 
Equating coefficients of Equations A2 and A7 gives 

and 

/'/l 

b = 2[A~ + A~ + A~] -'/2 (A9) 

�89 n2 = l bA 2 n3 = �89 bA3 (A10) 

In the derivation, one uses the fact that 

n~ + n~ + n~ = 1 (Al l )  

which leads readily to Equation A9. 
Because the expression for ( l /L) of the two sets of 

planes (Equation AV) is equal to that for the one set 
of planes (Equation A2), it follows that their expres- 
sions for (1/L 2) are also equal. Hence the components 
of the tensors M,j are equal for the single-plane and 
two-plane systems. Then as every single-plane system 
satisfies (Equation A5), it follows that the determinant 
[M#] is zero for the two-plane system as well. 

If there are initially three sets of planes, two can be 
combined into an equivalent single set of  planes which 
in turn can be combined with the third set of planes. 
This reduces the three sets of planes to an equivalent 
single set. Hence, [M~[ = 0 for the original set of three 
planes. This inductive proof  can be extended to any 
number N of  sets of parallel planes. This proves that 
in any region (solid angle) in which ainl ~) are all greater 
or equal to zero, the resulting L(a~) lie on a plane 
surface. 

In the general case indicated by Equation 4, the 
choice of n (=) is prescribed as such that ainl ~) is greater 
or equal to zero. This may also be described by con- 
sidering n I~) in a chosen fixed direction and defining 
F (~) = _+ 1 such that a~nl~)F (~) is always greater or 
equal to zero. Then it can be seen that F (~) changes sign 
when a crosses the plane normal to n (~). But L(a~) is 
continuous at these lines because the contribution to 
(I/L) in Equation 2 for the component e which is 
changing sign, is zero at the boundary. This proves 
that L(a~) lies on a continuous polyhedral surface for 
any discrete number N of sets of parallel planes. The 
polyhedron will be closed if at least three of  the N sets 
of planes have normals n (~) which are not coplanar. If 
all n C~) are coplanar, then the surface L(a~) is a cylinder 
with generators perpendicular to the common plane of  
n (~). The cross-section of  the cylinder i s  a series of 
straight line segments which form a continuous closed 
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polygon with corners located along the directions 
ai" n~ = O. 

The proofs given for N sets of parallel planes in 
space can be adapted to the two dimensional case of  
Nsets of parallel fibres in a plane. It is readily seen that 
the description of the N sets of planes with normals all 
in one plane is essentially the two dimensional case 
when observed in the plane of the normals. 

In conclusion, no finite number N sets of parallel 
planes in three dimensions (or N sets of parallel fibres 
in two dimensions) can give an ellipsoidal distribution 
of L(ai) in three dimensions (or elliptical distribution 
L(O) in two dimensions). 
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